On Detecting Target Acoustic Signals Based on Non-negative Matrix Factorization

نویسندگان

  • Yu Gwang Jin
  • Nam Soo Kim
چکیده

In this paper, we propose a novel target acoustic signal detection approach which is based on non-negative matrix factorization (NMF). Target basis vectors are trained from the target signal database through NMF, and input vectors are projected onto the subspace spanned by these target basis vectors. By analyzing the distribution of time-varying normalized projection error, the optimal threshold can be calculated to detect the target signal intervals during the entire input signal. Experimental results show that the proposed algorithm can detect the target signal successfully under various signal environments. key words: acoustic target signal detection, non-negative matrix factorization, normalized projection error

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iterative Weighted Non-smooth Non-negative Matrix Factorization for Face Recognition

Non-negative Matrix Factorization (NMF) is a part-based image representation method. It comes from the intuitive idea that entire face image can be constructed by combining several parts. In this paper, we propose a framework for face recognition by finding localized, part-based representations, denoted “Iterative weighted non-smooth non-negative matrix factorization” (IWNS-NMF). A new cost fun...

متن کامل

Voice-based Age and Gender Recognition using Training Generative Sparse Model

Abstract: Gender recognition and age detection are important problems in telephone speech processing to investigate the identity of an individual using voice characteristics. In this paper a new gender and age recognition system is introduced based on generative incoherent models learned using sparse non-negative matrix factorization and atom correction post-processing method. Similar to genera...

متن کامل

A new approach for building recommender system using non negative matrix factorization method

Nonnegative Matrix Factorization is a new approach to reduce data dimensions. In this method, by applying the nonnegativity of the matrix data, the matrix is ​​decomposed into components that are more interrelated and divide the data into sections where the data in these sections have a specific relationship. In this paper, we use the nonnegative matrix factorization to decompose the user ratin...

متن کامل

Improved Dictionary Selection and Detection Schemes in Sparse-cnmf-based Overlapping Acoustic Event Detection

In this paper, we investigate sparse convolutive non-negative matrix factorization (sparse-CNMF) for detecting overlapping acoustic events in single-channel audio, within the experimental framework of Task 2 of the DCASE’16 Challenge. In particular, our main focus lies on the efficient creation of the dictionary, as well as the detection scheme associated with the CNMF approach. Specifically, f...

متن کامل

Detection of cells from calcium imaging data by non-negative matrix factorization

A method for detecting the position of cells from multi-cellular calcium imaging data using non-negative matrix factorization is presented. Contamination of the background in the cell signals is effectively avoided by treating it as a distinct component with a constraint. The validity of the method is tested upon simulated and real calcium imaging data. Keywords— Calcium imaging, cell sorting, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEICE Transactions

دوره 93-D  شماره 

صفحات  -

تاریخ انتشار 2010